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Abstract We present SARA (Software for Accordion

Relaxation Analysis), an interactive and user-friendly

MATLAB software environment designed for analyzing

relaxation data obtained with accordion spectroscopy.

Accordion spectroscopy can be used to measure nuclear

magnetic resonance (NMR) relaxation rates in a fraction of

the time required by traditional methods, yet data analysis

can be intimidating and no unified software packages are

available to assist investigators. Hence, the technique has

not achieved widespread use within the NMR community.

SARA offers users a selection of analysis protocols span-

ning those presented in the literature thus far, with modi-

fications permitting a more general application to crowded

spectra such as those of proteins. We discuss the advan-

tages and limitations of each fitting method and suggest a

protocol combining the strengths of each procedure to

achieve optimal results. In the end, SARA provides an

environment for facile extraction of relaxation rates and

should promote routine application of accordion relaxation

spectroscopy.

Keywords Accordion � Relaxation rate � Software �
Analysis � SARA

Introduction

Over the years, nuclear magnetic resonance (NMR) has

become a workhorse for studies of protein dynamics,

owing in great part to the atomic level description it pro-

vides. NMR has been used to probe modulation of protein

dynamics during enzymatic reactions (Eisenmesser et al.

2005; Henzler-Wildman et al. 2007), to relate protein

dynamics and thermodynamics of binding (Akke et al.

1993; Wand 2013), or to provide mechanistic insights such

as revealing minor conformers (Sugase et al. 2007; Kor-

zhnev and Kay 2008). Measurement of NMR relaxation

rates is a mainstay among the methods used to probe

dynamics. Unfortunately, these measurements can require

prohibitive acquisition times, on the order of a day or

longer. Consequently, in the absence of a priori knowledge

of the relevance of internal motions, the required invest-

ment in spectrometer time dampens the incentive to per-

form such experiments. Indeed, dynamics may prove to be

important for a protein’s function, but the return from

lengthy measurements may be disappointing as well, for

instance when only unstructured terminal regions display

flexibility. To overcome costs in acquisition time, the

accordion method (Bodenhausen and Ernst 1981) can be

used to rapidly measure relaxation rates with accuracy

indistinguishable from those measured with traditional

methods (Mandel and Palmer 1994; Rabier et al. 2001;

Chen and Tjandra 2009). In effect, the accordion method

accelerates data acquisition by encoding two indirect

dimensions simultaneously. For example, when measuring

relaxation rates, the traditional method involves recording

a series of 2D HSQC experiments, each with a different

relaxation period, effectively resulting in a 3D experiment.

In the accordion version, the relaxation period is incre-

mented synchronously with the period encoding signals
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with heteronuclear chemical shifts, reducing the dimen-

sionality of the experiment from three to two. Whereas ten

or more 2D experiments are typically recorded using the

traditional method, the accordion method requires only

two. Thus, relaxation rates can be estimated with a few

hours of acquisition instead of days.

Despite its age, the NMR community has under-utilized

accordion relaxation spectroscopy. Bodenhausen and Ernst

(1981) first developed the accordion method for exchange

spectroscopy in 1981, and Mandel and Palmer (1994)

subsequently applied it to relaxation rates in 1994. How-

ever, to our knowledge there have been only five publi-

cations (Mandel and Palmer 1994; Carr et al. 1998;

Guenneugues et al. 1999; Rabier et al. 2001; Chen and

Tjandra 2009) on accordion and relaxation analysis. This

scarcity is even more surprising when one considers that

the application of accordion spectroscopy to NMR relax-

ation is intuitively simple; the relaxation decay curve is

encoded into the line-shape of NMR signals. Unfortu-

nately, the various procedures available to extract the

relaxation rates can be intimidating, time consuming and/or

limited to resolved signals. The lack of discussion on the

advantages and disadvantages of these procedures further

impedes a popularization of the accordion technique. Thus,

a unified software package enabling reliable and rapid data

analysis is needed to promote the application and devel-

opment of the accordion method.

We present here, SARA, a graphical, user-oriented

software package designed to simplify and accelerate

accordion data analysis. We have implemented existing

and designed novel protocols allowing users to make use of

the optimal fitting procedures for a given protein, bypass-

ing the limitations of any one technique. In an effort to

make it more accessible to occasional NMR users, SARA

is written in MATLAB (MATLAB 8.2, The MathWorks

Inc., Natick, MA, 2013) and features an intuitive graphical

user interface. In addition, we discuss the advantages and

limitations of the analytical procedures implemented in

SARA within the framework of their application to studies

of protein dynamics. Finally, we describe a new protocol

that employs all of the fitting procedures included in SARA

and ensures critical inspection of the fitted data during

accordion relaxation analysis. Overall, SARA provides an

environment well-suited for routine analysis of relaxation

rates obtained with accordion spectroscopy, a powerful

technique capable of rapidly assessing protein dynamics.

Principles of accordion relaxation spectroscopy

The accordion method can be used to reduce the dimen-

sionality of NMR relaxation experiments; while traditional

methods require the collection of an entire series of 2D

experiments, the accordion method requires only two

measurements. The principles of the method are described

in this section.

Relaxation rates are measured by monitoring the decay of

NMR signals as a function of the length of a relaxation period

tr, under the influence of either longitudinal or transverse

relaxation. During a traditional relaxation experiment, the

relaxation delay tr is incremented independently of the het-

eronuclear chemical shift evolution period t1, resulting in a

series of 2D spectra. The time evolution, I, of a signal over

these two dimensions can be written as

Iðt1; trÞ ¼ I0eð�R�þixÞt1 e�Ritr ð1Þ

where I0 is the signal intensity and x is the heteronuclear

chemical shift frequency. Ri is the relaxation rate of

interest (either R1 or R2) and R* represents any relaxation

occurring during t1, including contributions from field

inhomogeneities. Analyzing relaxation data in this form is

straightforward; encoding with t1 provides signal disper-

sion along a second dimension, and the relaxation rates are

extracted by fitting an exponential to the signal intensities

along a third, distinct dimension spanned by tr. In contrast,

the analysis of accordion data is more complicated because

the t1 and tr dimensions are no longer distinct.

In an accordion experiment, the relaxation and chemical

shift evolution periods are incremented synchronously yet

with different time increments Dtr and Dt1, respectively. As

a result, the tr and t1 dimensions are combined to form a

single dimension. The proportionality constant between

time increments

j ¼ Dtr

Dt1
ð2Þ

is termed the accordion factor (Guenneugues et al. 1999). If

we express tr as a function of t1

tr ¼ jt1 ð3Þ

and rewrite the apparent time evolution of the signal, now

as a function of t1 only,

Iðt1Þ ¼ I0eð�R�þixÞt1 e�jRit1 ¼ I0e�ðR
�þjRiÞt1 eixt1 ð4Þ

we recover an easily interpretable expression. The

frequency dependence of this signal is identical to that

found in the traditional experiment, leaving the position of

peaks in the spectrum unchanged. The signal decay

envelope, however, now reports on relaxation during both

the tr and t1 periods, as does the line-shape of the signal in

the corresponding frequency domain. We define Robs, the

observed decay constant in the indirect dimension, as

Robs ¼ R� þ jRi ð5Þ

Thus, two measurements of Robs with different values of

j enable discrimination between the relaxation rate during
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t1 (R*) and the relaxation rate during tr (Ri). Although some

protocols set constraints on the values of j in order to

cleverly simplify the analysis (Mandel and Palmer 1994),

SARA has been designed to analyze pairs of spectra with

any two different values of j. Additionally, SARA does not

impose any experimental constraints other than requiring

that the initial amplitude in t1 be identical for both exper-

iments. In other words, it only requires that the user not

change parameters such as the gain or the number of scans

between the two experiments.

Overall, the principle of the accordion method is rather

simple, yet the experimental time-savings are substantial:

Relaxation rates are encoded into the decay of the indirect

dimension [or equivalently into the corresponding signal

line-shape after Fourier transformation (FT)] and only two

experiments are needed to delineate Ri from R*. However,

the process of extracting relaxation rates using non-linear

fitting procedures, particularly in the context of crowded

protein spectra, is a rather complex task best performed

with the assistance of interactive software.

Analysis protocols and their implementations in SARA

Many protocols have been suggested for extracting rate

constants from accordion spectra. In their original accordion

publications (Bodenhausen and Ernst 1981; Bodenhausen

1982) studying exchange processes, Bodenhausen and Ernst

proposed obtaining exchange rates from direct fits of Lo-

rentzians to line-shapes in the frequency domain. They also

suggested extracting individual peaks from spectra and

monitoring cross-peak buildup for second order exchange

processes following inverse Fourier transformation (IFT).

Mandel and Palmer (1994), (Carr et al. 1998) proposed fit-

ting decaying oscillators to accordion interferograms (i.e.

Fourier transformed in the directly detected 1H dimension

but not in the indirect dimension). Rabier et al. (2001) also

fit using decaying oscillators, but they computed the resid-

uals following Fourier transformation. Guenneugues et al.

(1999) fit the line-shapes of signals in the frequency domain.

Finally Chen and Tjandra (2009) measured the line-widths

of signals to extract relaxation rates. We have found that, in

their original implementation, specific constraints limit each

protocol (see below) and they may not be applicable indi-

vidually and in all circumstances. SARA gives users access

to a selection of protocols spanning the breadth of those

proposed by other groups in order to allow researchers to

choose the optimal fitting procedures for a given protein. For

each protocol, modifications have been implemented to

enable a more general application. SARA also uses a

graphical and user-friendly MATLAB interface. In this

section, we discuss the details of each fitting procedure.

Preliminaries and general features

SARA offers the flexibility to analyze data originating

from several processing software packages, but some

aspects of processing must conform to a few specific

guidelines. Spectra may be loaded in the nmrPipe (Delaglio

et al. 1995) format or in a format adapted from NMRLAB

(Gunther et al. 2000). To allow for comparison among

various procedures, SARA requires two input files: a t1
interferogram and a fully processed two-dimensional

spectrum. There are no restrictions on the processing of the

detected dimension (F2), as this dimension is not part of the

relaxation analysis. In contrast, no processing may be

applied to the indirect time domain (t1) of the t1-interfer-

ogram. In the two-dimensional spectrum, only apodization,

zero-filling, Fourier transformation, and phasing are per-

missible when transforming to the indirect frequency

dimension (F1). For convenience, we have provided nmr-

Pipe and NMRLAB processing scripts specifically

designed to output both files in a format compatible with

SARA.

SARA also requires a few auxiliary files and parame-

ters for analysis: the value of j for each spectrum, an

X-easy peak list, a file containing the amino acid

sequence in single-letter code, and the values of the

maximum chemical shift in each dimension (F1 and F2)

for referencing. The latter values may be verified within

SARA using a calibration dialog. The calibration dialog

displays the spectrum and overlays the positions of peaks

found in the X-easy peak list. The user may interactively

adjust the maximum chemical shift in each dimension to

ensure proper alignment. In order to perform Monte Carlo

simulations the user must also specify a region of the

interferogram from which SARA may calculate the

standard deviation of the noise. This is also accomplished

with an interactive dialog.

After loading their data, researchers may choose from

three procedures, which are described in detail below.

The first two procedures are variations of the protocol

proposed by Mandel and Palmer (MP) (1994). The first is

a modified, fully-automated version of the MP method.

The second is a user-assisted version of the automated

MP protocol and allows the researcher to optimize the

fitting parameters returned by the stand-alone MP algo-

rithm. The last procedure, named FT/IFT, is a user-

assisted, semi-automated protocol which extracts signals

from the spectrum in the frequency domain and analyzes

them after IFT. It addresses the inability of the MP

method to isolate the fitting of one peak from that of

other peaks in the same t1 slice. We describe the

implementation of these protocols in the reminder of this

section.
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MP method

Mandel and Palmer proposed two different data analysis

schemes, both of which analyze the data in the time-domain

of the indirect dimension, and each requires two experiments

with accordion factors j = ?j0 (forward experiment) and

j = -j0 (reverse experiment). In the first scheme, called the

‘‘forward-reverse’’ method, the observed relaxation rate,

Robs, is fit separately in each experiment. The relaxation rate

of interest, Ri, is calculated using

Ri ¼
Rf � Rr

2j0

ð6Þ

where Rf is the observed relaxation rate in the forward

experiment and Rr is the observed relaxation rate in the

reverse experiment. In the second analysis scheme, termed

the ‘‘negative-time’’ method, the reverse experiment is

inverted in time and concatenated with the forward

experiment, forming a single data set. In this case, the

entire combined data set is fit at once and provides Ri and

R* directly.

Although the two analysis schemes differ in their

approach to obtaining Ri, fitting of the interferogram is

accomplished similarly in both. The detected 1H dimension

is Fourier transformed to form a t1 interferogram, and a t1 free

induction decay (FID) is analyzed for each signal. The

positions of the t1 FIDs in the 1H dimension are determined

by inspecting the signals in the 2D Fourier transformed

spectrum. Next, Hankel singular value decomposition

(HSVD) (Barkhuijsen et al. 1987) of each t1 FID is used to

populate a list of time-domain signals putatively present in

the slice. HSVD parameterizes these signals by estimating

their amplitudes, phases, frequencies and decay rates. We

term a collection of these four parameters an oscillator.

Putative oscillators are screened by comparison to the fre-

quencies and phases of signals that are plausibly present in

the FID (given their 1H frequency), and erroneous oscillators

are removed. The parameters of the surviving oscillators are

used as the starting point for a non-linear least-squares

optimization. Both the ‘‘forward-reverse’’ and ‘‘negative-

time’’ analysis methods model the FID as a sum of damped

oscillators, but the target function differs slightly in each.

Although all accordion publications following those by

the Palmer group calculate Ri from two separate fits of Robs

(i.e. using the same strategy found in the MP forward-

reverse scheme), there is an advantage inherent to the MP

negative-time technique that has not yet been utilized by

other authors. Because the two accordion experiments are

combined prior to fitting, Ri is fit directly by fitting both

experiments simultaneously. This increases the fit precision

and bypasses subsequent calculation of Ri and associated

error propagation. However, these advantages are a result

of global fitting, of which the negative-time technique is a

special case, and we note that there is no inherent need to

record experiments with the specific values j = ?j0 and

j = -j0. A similar advantage is obtained with two arbi-

trary values of j if the experiments are fit simultaneously

using a suitably constructed global non-linear optimization

(Herman and Lee 2012). SARA harnesses this strategy in

its implementation of the MP method.

Automated MP implementation

Our implementation of the MP protocol incorporates two

approaches. The first is a fully automated algorithm fol-

lowing the protocol outlined in Fig. 1 and described in this

section. The user only needs to specify a handful of tol-

erances prior to initiation. The second is a user-assisted

version of the same algorithm, in which the user can

modify parameters in each processing block of Fig. 1

before passing the results to the next block. The latter

method is discussed in the next section.

The processing blocks themselves proceed according to

the MP method as described above and can be regrouped

into three steps as follows: Step 1 (Fig. 1 blocks 1–4),

selection of a t1 FID; estimation of the number of signals;

HSVD; and assessment of the HSVD results; Step 2 (Fig. 1

Robs circle), non-linear least squares fit of the individual

FIDs; and Step 3 (Fig. 1 global fit block), global non-linear

optimization of both FIDs. A Monte Carlo error analysis

can be performed once global fitting has been completed. If

desired, this Monte Carlo analysis can be applied to a user-

defined subset of residues. The two accordion data sets

(with different values of j) are treated independently until

global non-linear fitting, Step 3, where they are analyzed

simultaneously to extract Ri directly.

Step 1: Initial estimation of decaying oscillators

with HSVD

The first step selects the appropriate t1 FID and estimates the

number of signals within it. The outcome is a series of

amplitudes, phases, frequencies and decay rates that can be

used as initial estimates for the non-linear fitting of the FID in

Step 2. The FIDs in t1 are selected with help from the X-easy

peak list provided by the user. The user is responsible for

verifying that the coordinates specified in the peak list cor-

respond to signal maxima. The peak list is also used to esti-

mate the number of signals present in the FID, a parameter

required by HSVD. This number is obtained by counting all

signals with proton chemical shifts falling within a user-

defined range of the signal under analysis. Next, HSVD is

performed and returns a list of amplitudes, phases, frequencies

and decay rates defining the decaying oscillators present in

each t1-FID. HSVD provides reliable estimates of the

parameters yet tends to produce spurious oscillators, in
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particular for weak signals. To resolve this issue, we imple-

ment a strategy similar to that employed by Mandel and

Palmer. First, we systematically increase the estimate of the

number of oscillators provided to HSVD, ensuring that, while

erroneous oscillators may be present, all oscillators corre-

sponding to real signals are taken into account. Next, the

frequencies returned by HSVD are filtered by comparison to

those found in the X-easy peak list, again within the user-

defined range of the signal of interest. Thus, in the end, our

HSVD procedure produces a total of N oscillators, each with

an estimated amplitude (An), phase (/n), frequency (xn), and

observed decay rate (Robsn
) for all N signals present in the FID.

Step 2: Non-linear fit of the individual FID

The next step uses the parameters returned by HSVD as the

starting point for a non-linear least squares fit of the FID.

The FID is fit to a sum of damped oscillators defined by the

target function F(t)

FðtÞ ¼
XN

n¼1

Anei/n eð�RobsnþixnÞt ð7Þ

The optimized parameter v2 is defined as

v2 ¼
XK

k¼1

Real IðkDt1Þ � FðkDt1Þf g2

þ Imag IðkDt1Þ � FðkDt1Þf g2 ð8Þ

where I represents the experimental data and k iterates over

the points in the discrete time dimension t1 (i.e. K is the

number of points acquired in t1). This step further refines

the parameter estimates from HSVD prior to global fitting.

Steps 1 and 2 must be performed on both accordion

experiments before beginning Step 3.

Step 3: Perform global non-linear least squares

optimization

While HSVD and the preliminary non-linear fits are per-

formed on the FIDs from each accordion experiment sep-

arately, the global non-linear least squares optimization is

performed on both FIDs simultaneously. The N signals

identified in Step 1 and fit in Step 2 are each associated

with four parameters: amplitude (An), phase (/n), fre-

quency (xn), and observed decay rate (Robsn
). Global fit-

ting, however, parameterizes relaxation using the tr
relaxation rate (Rin ) and the t1 relaxation rate (R�n). For each

oscillator, n, the initial values of Ri and R* are estimated

from the values of Robs using the equations

Ri ¼
Robs2

� Robs1

j2 � j1

ð9Þ

and

R� ¼ Robs1
� j1Ri ð10Þ

where the indices 1 and 2 correspond to the two different

accordion experiments. The phase of each signal is

calculated during each iteration as

/n ¼ xndDt1 ð11Þ

where d parameterizes the first evolution time sampled in

the experiment, dDt1. For most experiments d = 0 or �.

Initial estimates of the amplitude and frequency for each

peak are calculated by averaging the respective values

returned by the individual fits of the two accordion FIDs in

Step 2. For this reason it is important that the two

MP FT/IFT

Standard processing software

SARA

Compare

x2

Accordion experiments κ1 κ2

Process detected 
dimension

Process indirect 
dimension

Select t1 FID Define region

Estimate number
of signals

HSVD IFT & fit

Screen results Evaluate

Add
osc.Mirror

Ri

Global fit
(κ1 & κ2)

Ri

Robs x2 Robs

Global fit
(κ1 & κ2)

Fig. 1 Relaxation analysis flow chart. Two accordion experiments

are processed with conventional NMR processing software (e.g.

nmrPipe) and are loaded into SARA. The interferogram is analyzed

by the MP method, while the spectrum is analyzed by the FT/IFT

method. In the automated MP method, SARA completes the entire

MP analysis. When using interactive methods, users follow the steps

of the analysis as outlined in the text. Arrows indicate the flow of data

analysis from one task to another. Users may return to any prior step

in the analysis at any point in time. Values for Robs must be obtained

for each of the two accordion experiments prior to global fitting.

Global fitting is accessed via dialogs separate from those of the

analysis methods themselves. Results may be plotted in SARA and

accessed directly via the SARA save file
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experiments are recorded in a manner preserving this

amplitude (same gain, number of transients, recycling

delay, etc.). This condition is easily verified by comparing

the first point in the interferogram, i.e. the 1D-proton

spectrum corresponding to t1 = 0. Any difference in

amplitude between the two experiments will prevent the

optimization from converging to the correct values. The

fitted function Fp(t) (p = 1, 2) for each of the two FIDs is a

sum of N oscillators:

FpðtÞ ¼
XN

n¼1

Anei/n eð�R�nþixnÞte�jpRin t ð12Þ

The residual to be minimized, v2, includes the sum of

the squared deviations from both FIDs:

v2 ¼
X2

p¼1

XK

k¼1

Real IpðkDt1Þ � FpðkDt1Þ
� �2

þ Imag IpðkDt1Þ � FpðkDt1Þ
� �2 ð13Þ

where I and k are defined as in Step 2 and p iterates over

the two accordion experiments. Thus, the values of Ri and

R* in Fp(t) are obtained by a simultaneous fit of both

experiments. As discussed, including both FIDs in a single

fit rather than calculating Ri from individual fits of Robs

increases the precision in Ri.

Step 4: Monte Carlo error analysis

To provide a reliable error estimate, SARA includes a

Monte-Carlo error analysis dialog for each method.

Prior to its use, however, the level of noise in each

interferogram must be established using the noise dialog

accessed from the main SARA menu. Users are asked

to define a region in one of the interferograms that

contains only noise. Histograms of the real and imagi-

nary values of points within the region are displayed to

assist users in identifying outlier regions or artifacts.

SARA then calculates the standard deviation of the

points in this region for both interferograms with dif-

ferent values of j to determine the t1 noise level in

each (rn1 and rn2).

Within the Monte Carlo dialog, the user may specify the

residues for which the Monte Carlo will be performed as

well as the number of Monte Carlo iterations, NMC. During

each round, real and imaginary traces of pseudo-random,

gaussian noise with standard deviation rn1 and rn2

respectively are added to the experimental data of each

interferogram. Global fitting, as in Step 3, is repeated NMC

times. The output is an estimate of the standard deviations

of both R* and Ri. Once a Monte Carlo error analysis has

been performed, error bars are automatically added when

plotting results using SARA.

Interactive MP implementation

The interactive MP method follows the same organization

as the automated MP method depicted in Fig. 1 but allows

for user intervention at each of the individual blocks.

Figure 2 shows the window used to optimize the fitting

parameters and monitor the fitting quality. As in the

automated method, a t1 FID (displayed at the top left of

Fig. 2) is selected from the interferogram based on the

position of a residue in the X-easy peak list. This position

is visualized by a blue crosshair cursor in the 2D contour

plot (top right, Fig. 2). The bottom left plot contains the F1

slice from the 2D spectrum corresponding to the vertical

component of the crosshair and is the Fourier transform of

the t1 FID displayed above it. Displayed at the bottom right

is a slice from the F2 dimension corresponding to the

horizontal component of the crosshair in the contour plot.

The residue of interest is termed the ‘‘active’’ residue, and

the t1 FID should be chosen to coincide with the maximum

intensity of the active residue along the detected frequency

dimension (F2), ensuring the maximum signal-to-noise

ratio (SNR) possible. The F1 and F2 slices help the user

visualize the t1 FID selection process and are updated

interactively upon changes by the user. The user positions

the crosshair using the movement controls to the right of

the contour plot (‘‘Move’’ in Fig. 2). The additional green

vertical lines displayed on the 2D contour plot represent the

maximum distance in F2 at which signals are to be con-

sidered during HSVD (as in Step 1 of the automated MP

procedure). These signals are defined by the ‘‘Nearby’’

button in Fig. 2, and the estimated number of oscillators

present in the FID is updated in an editable box (‘‘# Osc’’ in

Fig. 2). Vertical lines are added to the F1 plot (bottom left)

at the F1 position of each peak identified in the search (not

shown in Fig. 2). The vertical line corresponding to the

active residue in this plot is marked in green (shown in the

F1 plot of Fig. 2). These lines allow the user to verify the

validity of the estimated number of oscillators. Peaks may

appear ‘‘nearby’’ according to the definition implied by the

contour plot’s vertical lines but may not appear substan-

tially in the spectrum corresponding to the t1 FID. With this

knowledge the user may adjust the number of oscillators

prior to HSVD. Users are reminded that it is usually

preferable to over-estimate the number of oscillators, as

erroneous oscillators may be removed after HSVD.

HSVD of the active residue FID is achieved by pressing

the ‘‘HSVD’’ button. As in the automated MP method, the

oscillators returned by HSVD are screened by comparison

to the expected frequencies and phases of the signals

identified in the search for nearby residues. The screening

tolerances may be adjusted in the ‘‘Tolerance’’ dialog

(‘‘Tol’’ button in Fig. 2). The frequencies of oscillators that

pass the screening process are again visualized with
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vertical lines in the F1 slice (not shown). Users should

verify that there is a one-to-one correspondence between

the peaks present in the F1 plot and the oscillators marked

by vertical lines. In the absence of any external informa-

tion, HSVD provides estimates that are used as the initial

values for the subsequent non-linear fit. If better estimates

of these parameters have been obtained by other, inde-

pendent means, the estimates provided by HSVD can be

replaced prior to fitting. Additionally, users may specify

that a parameter or group of parameters be held fixed

during fitting, thus reducing the total number of parameters

fitted. Furthermore, entire oscillators may also be added or

removed from the fit. All of these changes may be made

using the ‘‘HSVD out’’ button in Fig. 2. Such flexibility

when handling fitted parameters enables users to correct

inaccuracies found in the MP method, while still benefiting

from its high precision (see ‘‘Discussion’’ section).

Until this point, the steps taken by the user have all

fallen within Step 1 of the automated MP method and

correspond to the blocks in the MP method of Fig. 1. The

user may return to any previous step at any point in time if

the parameters are not satisfactory. After editing the results

of HSVD, the user presses the ‘‘Fit’’ button (Fig. 2) to

initiate a non-linear fit as described in Step 2 of the auto-

mated MP method. The fitted data is overlaid with the

experimental data in the t1 FID plot and is Fourier trans-

formed and overlaid with the F1 slice below. Users may

evaluate the fit using two different methods. The fitted

parameters can be examined using the ‘‘Fit out’’ button.

Alternatively, the user may display a subset of the fitted

oscillators in the F1 spectrum, rather than the entire sum,

using the ‘‘See individual oscillators’’ feature (‘‘See osc’’ in

Fig. 2). Together, these methods allow the user to verify

that each signal is fit appropriately and that the optimiza-

tion has not converged to a local minimum. Once the fit is

satisfactory, the user must save the results with the ‘‘Save’’

button before either proceeding to another residue in the

same experiment (‘‘Next’’, ‘‘Prev’’ or ‘‘Go To’’) or

switching to the second accordion experiment. Global fit-

ting (Step 3 of the automated method) may only be
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Fig. 2 The interactive MP dialog. White boxes represent user-

editable fields. Labels have been edited for clarity. Plots, from left

to right and top to bottom, contain: the t1 FID, a contour plot of the 2D

spectrum, the F1 slice from the 2D spectrum corresponding to the t1
FID and a slice from the F2 dimension corresponding to the horizontal

line of the blue crosshair in the contour plot. The value of the

accordion factor (j) for the current experiment is displayed above the

contour plot (here, ‘‘j = 0.00’’). Users select the appropriate t1 FID,

with reference to the 2D spectrum, using the ‘‘Move’’ and ‘‘Scale’’

buttons. Nearby residues are identified by pressing the ‘‘Nearby’’

button. The number of oscillators requested from HSVD can be edited

(‘‘# Osc’’), and the parameters for screening the results can be

adjusted (‘‘Tol’’). The oscillators returned by HSVD may be edited

(‘‘HSVD out’’) and oscillators may be added or removed. Non-linear

fitting is performed with the ‘‘Fit’’ button. The t1 FID is fit and the

resulting fitted curve is displayed in magenta on top of the black

experimental data for comparison. The fitted curve in the time domain

is Fourier transformed and overlaid on top of the spectrum slice below

(not shown), and a green vertical line marks the F1 position of the

active residue. Rather than display the sum of all oscillators in the

frequency domain, users may opt to display oscillators individually

using the ‘‘See osc’’ feature (red, cyan and purple peaks). If

oscillators are viewed individually, their matching residue number is

displayed under ‘‘Viewing’’. Fitted parameters are viewed with the

‘‘Fit out’’ button, and poor fits may be marked with the ‘‘Bad fit’’

checkbox. Results must be saved (‘‘Save’’) or discarded before the

user may navigate through the residues of the X-easy peak list

(‘‘Next,’’ ‘‘Prev,’’ and ‘‘Go to’’)
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performed once the same residue has been successfully fit

in both accordion experiments. Both global fitting and

Monte Carlo error analysis are performed as described in

the automated MP method and are accessed as separate

features in the main SARA window.

FT/IFT method

Although we have found the MP method to be reliable in

general, severe errors may occur for special cases in

crowded spectra. The combination of partial overlap and a

high number of oscillators may result in a fit converging to

a wrong solution (see Fig. 5 and ‘‘Discussion’’). To help

resolve such errors without resorting to comparison with

the literature or traditional experiments (e.g. CPMG),

which would defeat the purpose of performing the accor-

dion measurement in the first place, we have designed an

alternative analysis protocol which we call the FT/IFT

method.

The FT/IFT protocol seeks to simplify analysis by

fitting signals on an individual basis wherever possible. It

is greatly inspired by the original procedure of Boden-

hausen et al., in which the accordion data is Fourier

transformed in both dimensions, an F1 slice is chosen

from the 2D spectrum, a peak within the slice is isolated

by zeroing all points around it, the slice is inverse Fourier

transformed, and finally the magnitude of the resulting

time-domain FID is analyzed. Clearly this procedure can

only be applied to symmetric, non-overlapped signals. To

generalize the method, we have designed a procedure to

extract spectral regions featuring one or potentially a few

overlapping signals along F1 while still allowing for

subsequent IFT and time-domain fitting. Two solutions

are presented to overcome overlap in the extracted region.

The first is a simple non-linear fit of the reduced set of

overlapping signals in the extracted region. The second

involves mirroring half of the line-shape of a partially

overlapped signal, a process we call symmetrization,

resulting in a single symmetric peak which is then inverse

Fourier transformed. These two solutions are not imple-

mented as distinct procedures but rather as alternative

features that can be used to assess the reliability of the

rates obtained by each method.

The Fourier-transform-based methods presented here

allow investigators to fit individual peaks separately.

Whereas in the interferogram-based methods proposed by

Mandel and Palmer, all signals in the t1 slice must be fit

simultaneously, in the FT/IFT method, signals may be

extracted from F1 slices and fit independently. Simplifying

the spectrum to reduce the number of oscillators may offer

significant advantages in cases of large proteins or crowded

spectra.

FT/IFT implementation

The FT/IFT method requires two 2D-Fourier-transformed

accordion spectra, each with a different value of j. The

steps of the FT/IFT method are summarized in Fig. 1. Only

apodization, zero-filling, Fourier transformation and phas-

ing along the indirect dimension are permissible. For each

peak, the user defines an extraction region, isolating the

signal or group of signals if there is overlap. This region

may differ between the two spectra as needed (e.g. to avoid

truncation of signals by the region boundaries). Next, we

construct a pseudo F1 slice, placing the extracted region in

the center and zero-filling both sides to the full spectral

width. Following inverse Fourier transform, the resulting

time-domain FID is truncated to the number of points

acquired, thus accounting for any initial zero-filling applied

during spectrum processing. We refer to this FID as a

‘‘reconstructed FID,’’ and it represents a recreation of what

would have been acquired if the peak (or group of over-

lapped peaks) had been isolated and nearly on-resonance

during acquisition.

If the extraction region contains only a single, isolated

signal then the reconstructed FID is fit as a damped

oscillator in a non-linear least squares optimization,

bypassing block 2 in Fig. 1. If, however, the region con-

tains two or more signals that cannot be effectively iso-

lated, then the reconstructed FID can be analyzed in two

different manners, as illustrated in Fig. 1. The first and

simplest method models the reconstructed FID as a sum of

damped oscillators. The second method requires further

spectral manipulation prior to inverse Fourier transform. If

a signal is partially resolved from others along F1, to the

extent that half of its line-shape does not contain any

contribution from overlapping peaks, the F1-slice can be

mirrored around the center of the targeted peak in a process

we call symmetrization. This procedure results in a single,

symmetric signal that can be inverse Fourier transformed

and fit using one damped oscillator. In both cases, the fit-

ting procedure is first optimized on fits of Robs, i.e. in

reconstructed FIDs derived from each accordion spectrum.

The final value of Ri, however, is derived by globally fit-

ting the two reconstructed FIDs simultaneously.

The FT/IFT procedure is semi-automated. The user is

required to define the extraction region position and

boundaries, establish the number of signals present within

the region (usually one), and verify that the non-linear

optimization is able to converge. The process is discussed

in detail below.

Step 1: Defining the extraction region

In the FT/IFT method the user navigates through the

X-easy peak list and chooses a so-called ‘‘active residue.’’
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The X-easy peak list contains the position of each signal in

the F1 and F2 dimensions along with the signal’s corre-

sponding residue number. This number may be arbitrary in

the case of unassigned proteins, but SARA uses it as a label

to differentiate signals. When establishing and testing fit-

ting procedures, the active residue is the only residue for

which the user should be concerned. While other residues

may be included in the fit because of overlap, their rates

will be measured from the regions in which each is the

active residue. This strategy ensures that the rate measured

for each residue is derived using the most optimal extrac-

tion region possible.

In SARA an extraction region is parameterized by: an

active residue, a list of other residues contained within the

region, boundaries of the region in F1, boundaries in F2, a

1D slice in F1, and a 1D slice in F2. The active residue is
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Fig. 3 The FT/IFT dialog. White boxes represent user-editable fields.

Labels have been edited for clarity. Plots, from left to right and top to

bottom, include: an F2 slice from the spectrum, an F1 slice from the

spectrum, a contour plot of the 2D spectrum, the extracted region

prior to inverse Fourier transformation and the reconstructed FID. The

real (black) and imaginary (brown) parts of the reconstructed FID are

both displayed. The green box surrounding the peak in the 2D contour

plot represents the limits of the region of interest. The F2 slice plotted

at the top left corresponds to the horizontal line of the blue crosshair

within the region-bounding box, and the F1 slice at the top-middle

corresponds to the vertical line. Users may ‘‘Move’’ and ‘‘Scale’’ the

bounding box with the respective buttons to the right of the contour

plot. Alternatively, users may specify the limits of the box and the

positions of the slices within it using the editable fields above the F1

and F2 plots. Additionally, these fields can be defined interactively

with a data cursor that is activated from the drop-down menu at the

left. This menu specifies which field is being defined (here, ‘‘F2 d
max’’) Symmetrization may be applied using the ‘‘Sym’’ button

group. The symmetrized peak is displayed in the ‘‘Region’’ plot at the

bottom left. Alternatively, as has been done in this example, the user

may add a second residue to the region using the ‘‘Add’’ button.

Residues may be removed using the ‘‘Del’’ button. The active residue

is listed at the top left, and any other residues added to the region are

listed at the top right. Once satisfied with the reconstructed FID, the

user presses the ‘‘Fit’’ button. The resulting fitted values of Robs are

displayed at the bottom right. The real (magenta) and imaginary

(green) curves of the fit are plotted on top of the experimental

reconstructed FID for comparison. The Fourier transform of the fitted

curve is overlaid on the ‘‘Region’’ plot (not shown). Rather than plot

the sum of all oscillators, individual oscillators may be Fourier

transformed and overlaid on the ‘‘Region’’ plot (cyan and red peaks)

using the ‘‘See osc’’ feature. The individual oscillators are displayed

next to ‘‘Viewing’’. Oscillators are matched to their assigned residues

using the ‘‘Match’’ dialog. The user may edit the initial fitting

parameters using the ‘‘Init’’ button. If a satisfactory fit cannot be

obtained, the residue may be marked as a ‘‘Bad fit’’ with the

corresponding checkbox. Results must be saved (‘‘Save’’) or

discarded before the user may move to another residue using ‘‘Next,’’

‘‘Prev,’’ or ‘‘Go to.’’
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listed at the top left of the FT/IFT dialog (Fig. 3), and any

other residues that are to be considered during the fit are

listed at the top right. The plots along the top row, from left

to right, are: a 1D slice along F2, a 1D slice along F1, and a

two-dimensional contour plot. The green box in the contour

plot represents the boundaries of the extraction region, and

the blue crosshair within it represent the positions of the 1D

slices displayed to the left. The bottom two plots contain

the extracted data. The frequency domain data on the left

displays the data prior to IFT. If symmetrization is not

used, then it is identical to the F1 slice in the top row,

otherwise it displays the symmetrized peak. The time

domain data on the right is the reconstructed FID calcu-

lated from inverse Fourier transformation of the plot to its

left. All of these plots are updated in real time while the

user defines the extraction region.

In order to maximize the SNR, the F1 slice must be

positioned at the height of the active peak in the F2

dimension. Additionally, the user should be sure to capture

the entire line-shape within the F1 region. Truncating the

base of the peak can lead to spurious oscillations in the

reconstructed FID and systematic inaccuracies in the fitted

rates (see Fig. 5 and ‘‘Discussion’’). The boundaries of the

region along F2 only need to be large enough for unam-

biguous identification of the maximal signal intensity in F2.

The region may be moved, expanded or contracted in both

dimensions of the contour plot using the controls to its right

(‘‘Move’’ and ‘‘Scale’’ in Fig. 3).

In cases of partial overlap between peaks in F1, special

consideration must be taken when defining the region

boundaries. The user may opt to accept some truncation of

the active residue signal prior to IFT in order to separate

the peaks; however, as mentioned above, this strategy can

introduce systematic errors. Alternatively, the user can test

if symmetrization resolves the overlap issue. SARA

includes an option to reconstruct a full peak using only one

half of the actual peak and can be accessed with the button

group on the left side of the FT/IFT dialog (‘‘Sym’’ in

Fig. 3). The symmetrization option may be beneficial in

cases of slight overlap, i.e. when half of the signal is not

perturbed by overlapping signals. However, symmetriza-

tion can introduce inaccuracies in rate measurements when

the peak maximum does not coincide exactly with a point

in the spectrum. Such a problem may be minimized with

extensive zero-filling prior to Fourier transformation (see

Fig. 7 and ‘‘Discussion’’). To accomplish this SARA

selects the single t1 FID corresponding to the signal to be

symmetrized, increases the amount of zero-filling for this

FID, and Fourier transforms this FID before applying

symmetrization. Thus, symmetrization is not applied to

signals taken from the low resolution, user-loaded spec-

trum but rather to signals benefiting from a much higher

digital resolution. The procedure alleviates the need for

extensive zero-filling of the entire dataset, thus saving disk

space and accelerating calculations for other methods of

analysis. The amount of zero-filling is estimated automat-

ically to ensure that the inaccuracy introduced by sym-

metrization does not exceed 0.6 % for rates of 5 s-1 and

above (see ‘‘Discussion’’ and Fig. 7). Clearly, this feature

does not prevent inaccuracies originating from a partially

overlapping peak that may contribute to the area of the

signal used for symmetrization. In particular, it may be

difficult to verify that half the line-shape of a signal is not

perturbed by an overlapping signal when investigating two

signals with a large difference in intensity. Users are

advised to exercise the symmetrization option with care.

If all of these solutions fail, or if the overlap is too

strong, the user may instead expand the region to contain

both of the overlapping residues and fit two oscillators to

the reconstructed FID instead of one. Pressing the ‘‘Add

residue to region’’ button (‘‘Add’’ in Fig. 3) will search the

peak list for residues positioned within the contour plot box

and prompt the user to add them to the region. When fitting

in the next step, SARA will determine the number of

oscillators to use based on the number of residues identified

in the region. Such an implementation of the FT/IFT pro-

cedure results in a reduction in the number of oscillators

that are fitted when compared to the MP method. The

major advantage is that the results of the fit displayed by

SARA are more simple to analyze and, hence, more likely

to reveal poor fitting.

Step 2: Optimizing data fit

The data is fit in the time-domain rather than the frequency

domain. To transform the F1 slice from the frequency

domain to the time domain SARA extracts the region,

performs symmetrization if requested, centers it at zero

frequency, zero-fills the spectrum to the full spectral width,

performs an inverse Fourier transform and truncates the

resulting FID to the number of points acquired K (e.g. TD1,

ni, etc.).

After pressing the ‘‘Fit’’ button, the reconstructed FID is

fit to a sum of damped oscillators. The number of oscil-

lators N included in the fit is determined based on the

number of residues that were added to the region in the

previous step. Each oscillator n is defined by an amplitude

(An), a frequency (xn) and a decay rate (Robsn
). By fitting

the frequency of signals in the reconstructed FID, even

when only one signal is present, we relax any requirement

that signals be perfectly centered prior to IFT. The initial

amplitude of each oscillator is set to the value of the

reconstructed FID’s first point (i.e. at t = 0) divided by the

number of oscillators N. The initial decay rates default to

5 s-1. The initial frequencies are spread uniformly within

the boundaries of the region, e.g. if there are two oscillators
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in a 300 Hz region centered at zero then the initial fre-

quencies will be set to ?50 Hz and -50 Hz. As in the MP

protocol, the fitted function is the sum of damped oscilla-

tors. However, it now contains a minimal number of

oscillators, N, while being constrained to the same number

of data points (K). In addition, the target function is now

multiplied by the apodization function, G(t), used for

processing the spectrum:

FðtÞ ¼ GðtÞ
XN

n¼1

Aneð�RobsnþixnÞt ð14Þ

The optimized parameter v2 is identical to Eq. 8 of the

MP method. The resulting rate is a fit of Robs in the current

reconstructed FID only; the rate Ri is subsequently

obtained by globally fitting both accordion spectra simul-

taneously (Step 3).

In cases where two or more oscillators are fit to the

reconstructed FID, the sum of the oscillators is overlaid for

comparison with the experimental data. Alternatively, the

individual oscillators may be viewed using the ‘‘See indi-

vidual oscillators’’ feature (‘‘See osc’’ in Fig. 3). The decay

rates resulting from the fit are displayed for all residues

present in the region. However, the fitting procedure is

such that a set of fitted parameters (A, x, Robs) may not be

assigned to the correct residue. The user can assign the

correct oscillator to the correct residue using the ‘‘Match

residues to oscillators’’ feature (‘‘Match’’ in Fig. 3). In

cases of heavy overlap, the user should be sure to interpret

the results with care, as the accuracy and precision of fit-

ting decreases with increasing overlap.

At this stage, Steps 1 and 2 may be iterated to improve

the fit. The quality of the fit is assessed by visual inspection

of calculated and experimental points in the time and fre-

quency domains (Fig. 3). If the fit is not acceptable, the

user may first try to adjust the initial estimates of the

parameters to be fit. Users may also opt to fix a subset of

the fitting parameters using values known through other,

independent measurements (e.g. peak frequency). Both of

these strategies may be accessed using the initial parameter

dialog (‘‘Init’’ button in Fig. 3). If the fit remains unsatis-

factory, the user may return to Step 1 and adjust the

parameters of the extraction region. If the result still does

not meet expectations, the user may mark it as a ‘‘Bad fit’’

before moving on.

Step 3: Global fit

Because the two accordion spectra have different values of

j, the width of signals along F1, and consequently, the

user-defined regions will be different for each spectrum.

Therefore, for a given residue, the user must repeat Steps 1

and 2 on the second accordion spectrum prior to reaching

step three. The third step preforms a global fit of both

reconstructed FIDs for a given residue in order to extract

Ri. Global fitting is initiated from the main SARA dialog.

The global target function for each reconstructed FID is

defined in much the same way as in the MP method, except

that now it is multiplied by the apodization function G(t).

FpðtÞ ¼ GðtÞ
XN

n¼1

Aneð�R�nþixnÞte�jpRin t ð15Þ

The optimized parameter is the same as in Eq. 13,

except that now the experimental data Ip is a reconstructed

FID rather than a slice in the acquired interferogram. For

each oscillator, the average amplitude and frequency of the

two test fits performed in step 2 are used as the initial

values for the global optimization. The initial values for Ri

and R* are derived from the test fits of Robs and are cal-

culated using Eqs. 9 and 10.

Step 4: Monte Carlo error analysis

SARA offers a Monte Carlo error analysis dialog for the

FT/IFT as well. As with the MP methods, the user must

first establish the level of noise in each experiment and may

specify the number of rounds of the Monte Carlo and the

residues for which it will be performed. In each round of

the Monte Carlo SARA adds traces of pseudo-random

noise to the reconstructed FIDs and repeats Step 3. The

resulting standard deviations of R* and Ri are stored and

added as error bars when plotting results.

Discussion

When determining the ideal fitting procedures for a given

protein, the user should consider the advantages and dis-

advantages of each fitting method. In the MP method, the

absence of spectral manipulation in the t1 dimension pre-

vents any loss of signal or introduction of artifacts, and

therefore the MP method has a higher fitting precision than

the FT/IFT method (see below for an example). Never-

theless, the MP method fits many signals simultaneously

and signals overlapping in t1 may produce erroneous results

that go unnoticed. The FT/IFT method provides an

opportunity for users to more closely inspect their data in

order to identify inconsistencies and special circumstances.

Once problems occurring with the MP method are identi-

fied with FT/IFT, the user may opt to re-analyze the data

with the interactive MP method, albeit with input param-

eters estimated with FT/IFT. Thus, inaccuracies may be

identified with FT/IFT and precise and accurate rates can

later be obtained with the interactive MP method. This

section describes in detail the accuracy and precision of
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relaxation rates obtained with the various protocols offered

by SARA and describes how MP and FT/IFT can be used

in concert to identify inaccuracies while maximizing

precision.

Accuracy of the MP method

One example from ubiquitin captures many of the features

that distinguish the MP and FT/IFT fitting methods. An F1

slice taken from the HN spectrum of our ubiquitin sample

and centered on residue 49 (the active residue) also con-

tains four other residues. In particular residue 49 is close to

the strongly overlapped residues 31 and 72. When ana-

lyzing the corresponding t1 FID with the MP method, the

estimated number of oscillators provided to the HSVD

algorithm was five. However, the HSVD algorithm yielded

four oscillators to describe the data; only a single oscillator

was predicted to represent the two strongly overlapped

peaks. Subsequent non-linear fitting using four oscillators

yielded results that appeared valid. However, concerns

regarding the accuracy of rates in the presence of nearby,

overlapping residues prompted further investigation.

Indeed, in a simulated reconstruction of the data from these

residues, the rate of the active residue 49, which itself is not

subject to overlap, was unexpectedly inaccurate by 3.4 %

when residues 31 and 72 were fit with a single oscillator

(Fig. 4a and b). Accuracy for the rate of residue 49 was

recovered, however, if the number of oscillators was

increased to five and the overlapped signals were fit with

two oscillators rather than one (Fig. 4c and d). Hence, the

combination of two oscillators more completely accounts

for the presence of the overlapped signals and prevents

compensation by neighboring, isolated oscillators during

the fit. Even so, the rates obtained for the strongly over-

lapped residues themselves are extremely unreliable, as

seen by a simple visual inspection of Fig. 4d. While the

occurrence of such overlapping residues can be predicted

in a fully assigned protein, the blind application of the MP

method to unidentified overlapping residues could lead to

systematic inaccuracies in the fitted parameters. Indeed, the

fits of both FIDs and their Fourier transforms appear

deceptively good in Fig. 4, owing to the presence of other,

well-fit residues, and such erroneous results may well go

unnoticed. In fact, visual inspection of individual oscilla-

tors might suggest that using four oscillators provides

superior results (Fig. 4b vs. d). Clearly, when analyzing

experimental data such a situation would likely go unno-

ticed; four oscillators would be used in the fit, and the rate

of residue 49 would be inaccurate. Fortunately, the FT/IFT

method provides an alternative means of analysis that

reveals inconsistencies and may often provide relief, as

discussed in the following section.

Accuracy of the FT/IFT method

The FT/IFT method provides an alternative that both iso-

lates the fitting of signals from one another and allows

closer inspection by the user, facilitating the detection of

poor fits. The procedure may allow users to overcome the

limitations of the MP method. When analyzing the exam-

ple discussed above with the FT/IFT method, residue 49

was extracted together with residues 31 and 72 and fit using

only two oscillators, corresponding to the default number

of four oscillators used in the MP method. Comparison

between the rates obtained by MP and FT/IFT revealed a

discrepancy of 0.6 s-1 between the two, with the rate

obtained by FT/IFT inaccurate by only 1.1 % whereas that

of MP suffered from 3.4 % inaccuracy. This improvement

in accuracy further demonstrates that the error in the rate

estimated by MP originated from the cumulative effect of

numerous and overlapping oscillators in the same t1 FID;

when only two oscillators needed to be fit rather than four,
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Fig. 4 Inaccuracies of the automated MP method in the presence of

spectral overlap. The four panels contain simulated data (solid)

overlaid with their corresponding fits (dashed). The simulated data

reproduces the t1 FID and spectrum slice of residue 49 in ubiquitin. It

contains five damped oscillators corresponding to residues 4, 18, 31,

49 and 72. The frequencies of 31 and 72 are nearly degenerate.

a Time domain data (black) overlaid with a fit including four damped

oscillators (red). b Fourier transform of the FID in (a) (black) overlaid

with the Fourier transform of each individual damped oscillator

(colors). Visual inspection does not indicate inaccuracy for residue

49. c Same time domain data as in (a) (black) overlaid with a fit (red)

using five damped oscillators. d Fourier transform of the data in

(c) (black) overlaid with the Fourier transform of each individual

oscillator of the fit (colors). Residues 31 and 72 seem to give poorer

results. While visual inspection of panels (a)–(d) for residue 49

indicates similar performance between fitting with four and five

oscillators, the fit in panels a and b is inaccurate by 3.4 %. This figure

illustrates the importance of close inspection by the user when

applying non-linear fitting methods. The FT/IFT method can be used

to closely inspect and evaluate multiple fitting approaches in these

types of situations. The fitting strategy and parameters can then be

implemented in the interactive MP method for maximum fitting

precision

94 J Biomol NMR (2014) 58:83–99

123



the rate of 49 became more accurate. A markedly better fit

could be observed with the FT/IFT method when using

three oscillators rather than two, providing a rate accurate

within 0.03 %. The simplified interferogram produced by

the FT/IFT method simultaneously increases the chances of

identifying such an issue and provides the correct solution.

Alternatively, one could isolate residue 49 using the sym-

metrization feature, taking advantage of the minimal

overlap between 49 and 31/72. With symmetrization, the

rate was accurate within 1 %, demonstrating that the rate of

the symmetrized signal was closer to that obtained with

three oscillators than that obtained with two oscillators

using standard FT/IFT processing. Although FT/IFT, with

or without symmetrization, provides a more accurate

answer in this example, this trait cannot be generalized, and

we seek only to highlight that FT/IFT can be used as a tool

to identify discrepancies and help resolve them. Indeed,

when the parameters obtained by FT/IFT were supplied to

the interactive MP procedure, the estimated rate became

accurate to the fourth decimal place and benefited from the

increased precision of the MP method. We note that the

extraction and symmetrization procedures themselves can

introduce inaccuracies, and this section describes the

sources of these systematic errors and strategies to mitigate

them.

When determining the spectral region boundaries prior

to extraction, users should be sure to capture the entire line-

shape within the region. Figure 5 displays the normalized

inaccuracy of a fitted rate as a function of the relative

region width. A simulated spectrum was created with a

signal-to-noise ratio of 20 using a relaxation rate of 30 s-1

and a cosine-squared window function. The FT/IFT pro-

cedure was then performed for extracted regions of various

widths and repeated in a 1,000 round Monte Carlo simu-

lation. The absolute inaccuracy d is calculated as the dif-

ference between the mean of the measured rates (Rm) and

the true rate used to simulate the signal (Rt), d = Rm - Rt.

Normalized inaccuracy is calculated by dividing the

absolute inaccuracy d by the simulated rate Rt. The relative

region width is defined as the extracted region width

divided by the full-width at half-max (FWHM) of the ap-

odized and Fourier transformed peak. These simulations

reveal that extraction regions which truncate the line-shape

lead to systematic underestimation of the relaxation rate.

As expected the effect is dramatic when the extracted

region approaches the FWHM, and at two FWHM the fitted

rate remains inaccurate by over 15 %. At three FWHM,

rates become accurate within 6 % and at five FWHM a

theoretical rate of 30 s-1 leads to an estimated rate of

29.6 s-1 and, hence, an accuracy of 98.6 %. Thus, a region

width of five times the FWHM ensures accurate results for

rates near 30 s-1. Similar simulations were performed for

rates ranging from 5 to 100 s-1 and SNRs ranging from 5

to 300. The results show that larger rates require wider

regions, while smaller rates are less prone to inaccuracies

originating from truncation. Thus, at five FWHM, rates of

5, 50, and 100 s-1 are accurate within 1.1, 2.1, and 2.8 %,

respectively. Representative examples are provided in the

supplementary material for rates of 5, 10, 30, and 100 s-1

and for SNRs of 5 and 20 (Supplementary Fig. 1).

Inspection of Fig. 5 reveals that the error obtained by the

Monte Carlo analysis does not increase as the peak is

truncated. Thus, rates extracted from substantially trun-

cated signals may appear deceptively precise while being

inaccurate. That is, the error-bars associated with such a

rate would not account for the systematic underestimation

induced by truncation, and the probability that the true rate

would be contained within the error-bar-interval would be

reduced. However, while inaccuracies introduced by trun-

cation are insensitive to SNR (Supplementary Fig. 1), the

error associated with a fitted rate increases with decreasing

SNR and it becomes necessary to consider inaccuracy

relative to error when assessing the validity of a fitted

relaxation rate and its error-bars. Thus, we introduce a

parameter d/r that reports on both inaccuracy (d) and

precision as measured by the standard deviation (r) of

fitted rates in a Monte Carlo analysis. This parameter

provides insights on the confidence level associated with a

fitted rate’s error-bar-interval. To understand this parame-

ter we consider the following. For a given distribution of

fitted rates, inaccuracy moves the mean of the distribution

away from the ‘‘true’’ rate. A value of d/r = 0.5 implies

that the mean of the distribution deviates from the true rate

by half of the distribution’s standard deviation. Thus, the

probability of finding the true rate within the fitted rate’s

error bars is reduced. For example, for a Gaussian distri-

bution, error bars of ± r about the fitted rate describe a

68 % confidence interval. An inaccuracy d = 0.5r (d/r =

0.5) reduces the confidence level of the same error-bar-

interval to 62 %. Likewise, a value of d/r = 1 reduces the

confidence level of the error-bar-interval from 68 to 48 %.

Figure 6 displays the ratio of the absolute inaccuracy (d) to

the standard deviation (r) of fitted rates over a 1,000 round

Monte Carlo simulation. This ratio is plotted as a function

of SNR for rates of 10 s-1 (Fig. 6a) and 30 s-1 (Fig. 6b),

where SNR is defined as the amplitude of the first point of

the decaying signal divided by the standard deviation of the

noise in the time domain. The horizontal dashed line

highlights a value of d/r = 0.5, below which we consider

rates to be valid with high confidence (greater than 62 % if

the rates were drawn from Gaussian distribution). That is,

for a value of d/r below 0.5 one would expect the error

bars to encompass the true rate with high probability. The

colored lines correspond to region widths of 3, 4, 5 and 6

FWHM and therefore reflect different degrees of truncation

during extraction. Displaying d/r as a function of SNR
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provides a linear dependence in which the slope describes

how the confidence interval is affected as the SNR varies.

Small slopes mean that the region width provides valid

rates for a large range of SNR. Figure 6b shows that, for a

rate of 10 s-1, an extracted window width of three FWHM

provides valid rates for SNRs below 12, four FWHM is an

acceptable width for SNRs up to 30, five FWHM for SNRs

up to 55 and six FWHM for SNRs up to 85. For a rate of

30 s-1 the acceptable signal-to-noise ratios decrease to 5,

11, 20 and 30 for extracted window widths of 3, 4, 5 and 6

times the FWHM, respectively. This comparison reflects

the general trend that larger rates are more prone to inac-

curacies caused by truncation. However, this analysis

compares signals broadened by larger relaxation rates to

narrow signals associated with smaller rates at equal sig-

nal-to-noise ratios. In practice, signals with higher relaxa-

tion rates have reduced SNRs and de-facto satisfy the more

stringent requirement for a lower SNR. Additionally, Fig. 6

reflects that lower SNR provides relief from signal trun-

cation. The increased error associated with low SNR

overwhelms the inaccuracies introduced by truncation, and

in such a case, the large error-bar-interval still contains the

true rate with high probability. In summary, the FT/IFT

procedure may introduce inaccuracies for excessive trun-

cation of signal line-shapes, and these inaccuracies may not

be accounted for by the experimental error associated with

the estimated rate when truncation is performed at high

SNR. To restore the rate’s validity in such a case, users

should either increase the width of the extracted region

(and consider including additional oscillators if necessary)

or they should use the symmetrization feature if possible.

Figure 6 as well as Supplementary Fig. 2, which displays

similar plots for rates of 5 and 100 s-1, provide an

empirical means to evaluate the validity of the estimated

rates using FT/IFT.

Precision of rates obtained by FT/IFT

We have already discussed how the noise influences the

precision of rates obtained by FT/IFT. However, the
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Fig. 5 Normalized inaccuracy as a function of the relative region

width when fitting Robs with the FT/IFT method. Normalized

inaccuracy, d/Rt, was calculated as the absolute inaccuracy

d = Rm - Rt divided by the true rate used to generate the signal,

Rt = 30 s-1. Rm is the mean of the extracted rates, Robs, over a Monte

Carlo simulation. Normalized error was calculated as the SD of the

Monte Carlo simulation, r, divided by the true rate, Rt. Bold,

centerlines denote the normalized inaccuracy while the shaded

regions represent the extent of the normalized error (±r). The

inaccuracy and precision of the FT/IFT method (blue) is compared

with that of the MP method (green), which is displayed identically at

all window widths for visualization. Fits of Robs were calculated over

a 1,000 round Monte Carlo performed on a decaying exponential with

signal-to-noise ratio 20, decay rate 30 s-1 and defined by 128

complex points at intervals of 500 ls. During each round of the

Monte Carlo, pseudo-random noise was added to the pure signal and

the resulting FID was fit using the MP method. The FID was then

anodized with a cosine-squared window function, zero-filled to 4,096

points, Fourier transformed, and fit using the FT/IFT method at

various window widths. Relative region widths were chosen as

integer multiples of the full width at half max (FWHM) as measured

on the noiseless peak. The inlay displays the corresponding peak line-

shape. Solid bars in red, yellow, green and blue indicate region widths

of 3, 4, 5 and 6 times the FWHM respectively. Dashed lines in

matching colors indicate the respective inaccuracy at each level of

truncation
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Fig. 6 The combined variation of inaccuracy and precision as a

function of SNR at various region widths using the FT/IFT method.

Data is taken from simulated signals with decay rates of a 10 s-1 and

b 30 s-1. In each plot, the fixed value of inaccuracy (d), which is

independent of SNR, is divided by the standard deviation (r) of 1,000

fits of the relaxation rate at different values of SNR. The parameters

for each round of the Monte Carlo simulation are as described in

Fig. 5. The colored lines indicate region widths of three (red), four

(yellow), five (green) and six (blue) times the FWHM. The dashed

line indicates an inaccuracy that is half the SD of the fitted rate at the

given SNR. If these rates were drawn from a Gaussian distribution,

this value would correspond to a reduction in confidence of the error-

bar-interval (± r) from 68 to 62 %. For all rates, increasing the

extracted region width increases the confidence level by improving

accuracy [lower d, e.g. red (three FWHM) vs. blue (six FWHM)

lines]. At low SNR, the inherently large r dominates and even

substantial truncation (three FWHM, red lines) has little effect on the

level of confidence of the error-bar-interval. Smaller rates have lower

slopes and therefore remain within the 0.5 r region at higher values

of SNR when compared to larger rates [(a) vs. (b)]. The validity of

rates obtained with FT/IFT is most questionable for signals with large

relaxation rates yet high SNR, where the d/r ratio would be large,

reflecting that the error-bar-interval would be unlikely to contain the

true value. In practice, such a situation is unlikely to occur because

fast relaxation leads to reduced SNR
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precision of these rates is also affected by a reduction of the

signal intensity stemming from apodization. The ability to

isolate (groups of) signals in the frequency domain requires

apodization of the time domain data. Indeed, the t1 FID

must be free of truncation to prevent ‘‘sinc-wiggle’’ arti-

facts that would otherwise make the extraction procedure

inapplicable. This constraint is also present for other

methods that extract relaxation rates following Fourier

transform in t1, such as line-shape analysis (Guenneugues

et al. 1999) or simply line-width measurements (Chen and

Tjandra 2009). In these previous works the authors

restricted their analyses to data acquired either with large

values of j (Chen and Tjandra 2009) or subject to rates that

were intrinsically large (Guenneugues et al. 1999), leading

in both cases to fully relaxed FIDs that required no apo-

dization. Unfortunately, this solution is not applicable in

general because most proteins display a large dynamic

range of relaxation rates. To prevent sinc-wiggles, the user

would have to sample relaxation times dictated by the

smallest rates. However, such a constraint would greatly

reduce the signal-to-noise ratio of signals subject to larger

relaxation rates, for which the majority of the data acquired

would be noise. In a typical, well-folded protein, slowly

relaxing residues are a minority, located in loops and ter-

minal regions of the polypeptidic chain, and the experiment

would be sub-optimal for a majority of signals. Therefore,

it is preferable to design the acquisition to maximize the

sensitivity for all residues and to overcome truncation

artifacts with apodization. Indeed, Lefèvre and co-workers

have already implemented a procedure that includes apo-

dization, allowing accordion data to be analyzed in the

frequency domain even with a value of j = 0 (i.e. a ref-

erence experiment). However, their solution still required

that all signals in an F1 slice be fit simultaneously and did

not take advantage of the frequency domain separation

achieved by the Fourier transform. To account for the

apodization, it may appear efficient to divide the recon-

structed FID by the apodization function prior to fitting,

thus restoring the signal-to-noise ratio and providing access

to the (simpler) target functions of the MP procedure

(Eqs. 7 and 12). However, such a process frequently

introduces singularities in the reconstructed FID due to

division by numbers tending toward zero. In contrast,

inclusion of the apodization function in the target function

requires only a point by point multiplication and does not

increase the number of fitted parameters. Unfortunately, we

note that apodization results in a loss of signal intensity that

translates into a decrease in the precision of fitted param-

eters. For example, a signal with a relaxation rate of 5 s-1

is accompanied by an error of 0.056 s-1 with our imple-

mentation of the MP method. The error increases to

0.11 s-1 when fitting with the FT/IFT method, corre-

sponding to a two-fold loss in precision. Clearly the added

imprecision due to apodization decreases with increasing

relaxation rate, as less signal is lost (see Supplementary

Fig. 1). Thus, rates of 30 s-1 have only a 1.5-fold loss of

precision in otherwise identical simulations. Nevertheless,

apodization is necessary for a broad application of our FT/

IFT method.

Accuracy of the symmetrization feature

The symmetrization feature within the FT/IFT method

provides two potential advantages. Given partially over-

lapped peaks, it allows users to make a comparison

between fitting both peaks simultaneously and fitting each

signal separately after symmetry reconstruction. Symme-

trization may also help users identify overlapped residues

that had otherwise gone unnoticed. In such a case, a

seemingly isolated signal would give rise to two substan-

tially different rates when reconstructing from each half of

the peak. The identification of overlapped peaks is clearly

valuable in the context of protein functional studies, as

improper fitting can result in relaxation rate outliers and

subsequent erroneous mechanistic interpretations. How-

ever, symmetrization can introduce additional inaccuracies,

and SARA implements a special procedure to minimize

them. Symmetrization produces erroneous results when the

peak maximum does not coincide exactly with a point in

the spectrum, but this problem can be mitigated with

extensive zero-filling prior to Fourier transformation in t1.

The most severe inaccuracy is introduced when a peak’s

maximum is centered exactly between two points in the

spectrum. The magnitude of this inaccuracy is then a

function of the distance between the true center of the peak

and the closest point in the spectrum. That is, inaccuracies

introduced by symmetrization will depend on the digital

resolution of the spectrum. To quantify this effect and to

design a solution in SARA, we have performed simulations

at various relaxation rates and signal-to-noise ratios for

signals subject to this worst-case scenario. Figure 7 dis-

plays the accuracy of rates obtained by symmetrization as a

function of the number of points encompassed by the

FWHM. For each peak, symmetrization was performed by

using either the right half, which contains one more point

(Fig. 7b top), or the left half, which contains one fewer

point (Fig. 7b bottom). Thus, the former strategy artifi-

cially broadens the signal and overestimates the rate

(Fig. 7a, green) while the latter narrows the signal and

underestimates the rate (Fig. 7a, blue). Comparison of

simulations for rates of 1, 5, and 100 s-1 (Fig. 7a) reveals

that larger relaxation rates are the least affected by varia-

tion in spectral resolution, whereas smaller rates require a

large digital resolution to be accurate. This observation

simply reflects that a sharp signal will be more sensitive to

inaccuracies stemming from a symmetrization not
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performed around its true maximum. Figure 7a reveals that

fitting after symmetrization remains accurate to within

2.75 % for a rate as low as 1 s-1 if the signal’s FWHM

contains 800 points (vertical red dashed line). This criterion

was hence chosen as a means to minimize inaccuracies for

all rates. Figure 7c shows normalized accuracy (d/Rt) as a

function of relaxation rate under the 800-points-per-

FWHM condition (dashed line in Fig. 7a). All rates larger

than or equal to 5 s-1 remain accurate within 0.6 % fol-

lowing symmetrization. In a manner similar to that

described for Fig. 6, the validity of rates was assessed by

monitoring precision and accuracy as a function of SNR for

various values of zero-filling (Supplementary Fig. 3).

When symmetrizing signals with 800 points per FWHM,

even a rate of 1 s-1 and SNR higher than 250 are associ-

ated with errors-bars providing a high confidence level

(above 62 % when assuming a Gaussian distribution). This

criterion was used to design a procedure to limit inaccu-

racies introduced during symmetrization in an automated

manner. For any spectral width and apodization function

provided by the user, SARA automatically calculates the

amount of zero-filling needed for accurate symmetrization.

More specifically, a signal decaying with a rate of 1 s-1 is

simulated and apodized with the same function as the user-

supplied spectrum. It is then Fourier transformed so that its

FWHM can be measured, and SARA calculates the amount

of zero-filling needed to reach 800 points within this

FWHM (ZFsym). Symmetrization is not performed until the

user has defined the extraction window within the user-

loaded spectrum and the resolution of the data is not

modified until after this stage. After selecting one of the

‘‘Sym’’ options (Fig. 3), SARA extracts the corresponding

t1 FID from the interferogram, zero-fills it to ZFsym points,

and re-Fourier transforms the data. Symmetrization is then

performed on this single, high-resolution spectral trace

before inverse Fourier transformation and fitting. This

procedure ensures that symmetrization does not introduce

inaccuracies higher than 0.6 % for rates as low as 5 s-1.

Concerted use of MP and FT/IFT as a means to monitor

accuracy and improve precision

Although the features offered by symmetrization and the

FT/IFT method in general do come with caveats, they

provide a necessary alternative to the MP method that can

be used to validate rates and identify setbacks. In order to

capture the advantages of both procedures, fitting strategies

may be developed and tested using the FT/IFT method and

subsequently implemented in the MP method to maximize

precision.

In the end, we have found that the MP and FT/IFT

procedures are highly complementary. The MP procedure

has the indisputable advantage of analyzing the raw data

and therefore maximizes precision in the fitted parameters

because no apodization is necessary. However, the FT/IFT

procedure may identify signals that were fit poorly in the

MP protocol. In particular, the FT/IFT method overcomes

limitations due to the cumulative effects of numerous and

overlapping signals in the indirect dimension. Thus, we

recommend beginning the analysis with the FT/IFT pro-

cedure because it calls for the closest inspection by the

user. This allows the user to clearly identify overlaps as

well as ‘‘bad’’ signals (e.g. signals close to t1 noise or axial

peak artifacts). We then suggest using the user-interactive

MP protocol to maximize precision. Users may minimize

the risk of converging to a local minimum in the MP

method by using the amplitudes, frequencies and rates

obtained in the FT/IFT procedure as input to the optimi-

zation. Additionally, parameters known from independent

measurements can be incorporated or held fixed during

fitting. The local minima we encountered when applying

the MP method to ubiquitin highlight the importance of

user intervention when applying non-linear fitting methods

and emphasize the need for an interactive and user-friendly

software environment such as SARA. Because SARA

provides a visual comparison between the data and its fitted

function in both procedures, any discrepancy between them

can be identified and possibly resolved. We believe such a
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Fig. 7 Inaccuracy introduced by symmetrization. The worst-case

scenario for symmetrization occurs when the true peak maximum lies

exactly between two points in the spectrum [purple dots (b) center].

In this case symmetrization would reconstruct a peak that is too

narrow [(b) bottom, blue] or too wide [(b) top, green]. In either case,

the inaccuracy decreases when increasing the extent of zero-filling

prior to Fourier transformation. Panel (a) displays the inaccuracy

when fitting either the narrow (blue, bottom) or wide (top, green)

symmetrized signal as a function of the number of points spanning the

FWHM of the peak. Symmetrization simulations were performed

using the same parameters as in Figs. 5 and 6 except that in each case

the peak frequency was offset from zero by one half of the digital

resolution. The simulated decay curves were anodized, zero-filled to

multiple values based on the known FWHM and subsequently Fourier

transformed, symmetrized, inverse Fourier transformed and fit.

Curves are displayed for relaxation rates of 1, 5 and 100 s-1. The

dashed line in panel (a) indicates the amount of zero-filling used in

panel (c). Panel (c) displays the magnitude of the inaccuracy as a

function of the relaxation rate at a zero-filling level leading to 800

points per FWHM for each rate. Rates as low as 5 s-1 are accurate to

within 0.6 % under such conditions. SARA includes an automated

procedure using this level of zero-filling to minimize inaccuracies

introduced by symmetrization
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protocol allows researchers to analyze accordion data

reliably and to clearly identify potential inaccuracies.

Conclusions

We have developed a graphical, user-friendly software

package for processing data from accordion relaxation

experiments. It harnesses the development speed and

accessibility of the MATLAB environment to bring

accordion data analysis to a wide audience. In order to

provide users with the tools necessary to investigate a wide

array of proteins, we have implemented two analysis

methods in SARA that span the majority of approaches

presented in the literature so far. The MP method offers the

highest possible fitting precision, but it may be applied sub-

optimally without close inspection by the user. As an

alternative, we have developed the FT/IFT method which

harnesses the ability of the Fourier transform to separate

signals prior to analysis. We provide guidelines for its

appropriate application and discuss the limitations of its

use. We also include a symmetrization feature that may be

used both to identify cases of strong overlap and resolve

cases of slight overlap. The strength of SARA lies in its

ability to evaluate and fit data from multiple perspectives,

so we suggest a protocol relying on both the MP and FT/

IFT analysis procedures that, together, ensure a reliable and

precise estimation of relaxation rates using a robust and

interactive software environment. The accordion method is

an efficient way to measure relaxation rates in a fraction of

the time needed using traditional experiments. We hope

that the tools we have designed for analyzing relaxation

rates will facilitate and promote routine application of the

accordion method during biological studies and thereby

encourage a more systematic investigation of protein

dynamics by NMR. SARA is available for download at

http://www.jhttonline.jhu.edu/TechnologyDetail.aspx?TechID=

178F4955-3FB5-446A-9BAF-03D5ACF90264&JHURef=

C12656 or upon request from the corresponding author.
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Rabier P, Kieffer B, Koehl P, Lefèvre J-F (2001) Fast measurement of

heteronuclear relaxation: frequency-domain analysis of NMR

accordion spectroscopy. Magn Reson Chem 39:447–456. doi:10.

1002/mrc.870

Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled

folding and binding of an intrinsically disordered protein. Nature

447:1021–1025. doi:10.1038/nature05858

Wand AJ (2013) The dark energy of proteins comes to light:

conformational entropy and its role in protein function revealed

by NMR relaxation. Curr Opin Struct Biol 23:75–81. doi:10.

1016/j.sbi.2012.11.005

J Biomol NMR (2014) 58:83–99 99

123

http://www.jhttonline.jhu.edu/TechnologyDetail.aspx?TechID=178F4955-3FB5-446A-9BAF-03D5ACF90264&JHURef=C12656
http://www.jhttonline.jhu.edu/TechnologyDetail.aspx?TechID=178F4955-3FB5-446A-9BAF-03D5ACF90264&JHURef=C12656
http://www.jhttonline.jhu.edu/TechnologyDetail.aspx?TechID=178F4955-3FB5-446A-9BAF-03D5ACF90264&JHURef=C12656
http://dx.doi.org/10.1016/0022-2364(81)90137-2
http://dx.doi.org/10.1006/jmre1998.1374
http://dx.doi.org/10.1006/jmre1998.1374
http://dx.doi.org/10.1016/j.jmr.2008.12.001
http://dx.doi.org/10.1038/nature04105
http://dx.doi.org/10.1006/jmre
http://dx.doi.org/10.1006/jmre
http://dx.doi.org/10.1038/nature06410
http://dx.doi.org/10.1021/ar700189y
http://dx.doi.org/10.1006/jmra1994.1182
http://dx.doi.org/10.1002/mrc.870
http://dx.doi.org/10.1002/mrc.870
http://dx.doi.org/10.1038/nature05858
http://dx.doi.org/10.1016/j.sbi.2012.11.005
http://dx.doi.org/10.1016/j.sbi.2012.11.005

	SARA: a software environment for the analysis of relaxation data acquired with accordion spectroscopy
	Abstract
	Introduction
	Principles of accordion relaxation spectroscopy
	Analysis protocols and their implementations in SARA
	Preliminaries and general features
	MP method
	Automated MP implementation
	Step 1: Initial estimation of decaying oscillators with HSVD
	Step 2: Non-linear fit of the individual FID
	Step 3: Perform global non-linear least squares optimization
	Step 4: Monte Carlo error analysis

	Interactive MP implementation
	FT/IFT method
	FT/IFT implementation
	Step 1: Defining the extraction region
	Step 2: Optimizing data fit
	Step 3: Global fit
	Step 4: Monte Carlo error analysis


	Discussion
	Accuracy of the MP method
	Accuracy of the FT/IFT method
	Precision of rates obtained by FT/IFT
	Accuracy of the symmetrization feature
	Concerted use of MP and FT/IFT as a means to monitor accuracy and improve precision

	Conclusions
	Acknowledgments
	References


